PSEC2Results and further testing plans

Eric Oberla
Electronics Godparent Review 10/5/2010

PSEC-2 2nd gen fast "oscilloscope on a chip"

target specs

• channels: 4

• sampling rate: 5-18 GS/s

• sampling depth: **256**

• input bandwidth: ~ 2GHz

dynamic range: 1V

• A/D conversion: 12 bits in 2 μs

8 bits in 130 ns

• readout: 6 μs/channel

• power: <100mW/channel

Internal trigger

process

- IBM 130 nm CMOS
- submitted directly to MOSIS
- chip back: June 2010

<u>layout</u>

area: 4.4x4.4 mm²

PSEC2 Eval Board

PSEC2 Eval Board

Ring Oscillator - digitization speed

ADC Test points

Channel 1 – Analog out (DC level)

Sampling rate: 5GS/s readout speed: 125KHz (8 us/cell)

Digitization: having problems w/ Wilkinson ADC

read clock

Some bits appeared to still be counting once counter is stopped – leakage developed after several microseconds of storage. Simulations confirmed that dynamic dff in ADC counters leaks.

Sampling speed measurement:

Using sine wave input to chan1, used the analog out option to measure the sampling rate (topping out ~11 GS/s)

Sampled waveforms using Analog-out

Notes: Analog values are stored on buffer input capacitance, not designated sampling capacitor. (due to error in schematic)

Noise seen here dominated by set-up (scope, probe, etc.). We are currently designing board with external ADC to better characterize the noise/bandwidth

Summary

working: timing, sampling (mostly), readout, ramp

not working: A/D

<u>Plans</u>

Possibly design a board with external ADC for use with Chan1 analog-out. This would allow for further chip characterization (noise and bandwidth in particular).

PSEC2 flip chip/external ADC Eval Board

Transmission line input (front-end ready for large-area MCP tray)

PSEC2 flip chip/external ADC Eval Board

- •Firmware basically done
- board was tested in the last few days.
 Everything seems ok
- proceed with stud bonding of bare
 PSEC2s. (4x2 boards)
- •Finish PSEC2 tests in next weeks...move on

backup

Principle of Operation

block diagram

11 June 2010

Principle of Operation - timing generator

Principle of Operation — channel block diagram

11 June 2010

Principle of Operation — switched cap circuit

Output to analog buffer → A/D

Sampled voltage level

11 June 2010 17

Principle of Operation — ADC & Readout

11 June 2010

Principle of Operation — ADC & Readout

A/D conversion

Token readout →

